Pushing GaN Power Devices to the Limit – A Material and TCAD perspective

将GaN功率器件推向极限—材料和TCAD视角

李湛明 Simon Li, Ph.D.

www.iganpower.com

For IFWS2021

CROSLIGHT Software Inc.

www.crosslight.com

Contents

- Importance of field plates for lateral GaN
- Avalanche effect in GaN
- Avalanche in lateral GaNFET and FP design
- Summary

Review of TCAD for lateral GaN: Including Quantum Physics in Semiconductor Equations

$$\begin{split} & \left[\begin{array}{c} -\nabla \cdot \left(\frac{\epsilon_0 \epsilon_{dc}}{q} \nabla V \right) = -n + p + N_D (1 - f_D) - N_A f_A + \sum_j N_{tj} (\delta_j - f_{tj}), \\ & \mathbf{Semiconductor eqn.} \\ \nabla \cdot J_n - \sum_j R_n^{tj} - R_{sp} - R_{st} - R_{au} + G_{opt}(t) = \frac{\partial n}{\partial t} + N_D \frac{\partial f_D}{\partial t}, \quad J_n = n \mu_n \nabla E_{fn} \\ \nabla \cdot J_p + \sum_j R_p^{tj} + R_{sp} + R_{st} + R_{au} - G_{opt}(t) = -\frac{\partial p}{\partial t} + N_A \frac{\partial f_A}{\partial t}, \quad J_p = p \mu_p \nabla E_{fp} \end{split}$$

$$\begin{aligned} & \left[H(k) | \psi_i \rangle = E_i(k) | \psi_i \rangle \\ & \mathbf{Quantum} \qquad p = \sum_i \rho_i^{c_0} kT ln \left[1 + e^{(E_i - E_f)/kT} \right] + unconfined electrons, \\ & \mathbf{Quantum} \qquad p = \sum_i \rho_i^{c_0} kT ln \left[1 + e^{(E_i - E_f)/kT} \right] + unconfined holes, \\ \hline & \mathbf{M}(k) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - e_{i-i} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - e_{i-i} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - e_{i-i} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_{i-i} - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{fn} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{in} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}} \left(\sum_{i=1}^{k} e_i - E_{in} \right) \right] \\ & \left[\frac{1}{\mathbf{Quantum}$$

4 CROSLIGHT Software Inc.

Contents

- Importance of field plates for lateral GaN
- Avalanche effect in GaN
- Avalanche in lateral GaNFET and FP design
- Summary

Some early works on impact ionization rate (IIR)

Extraction of impact ionization from IV curves

Impact ionization occurs in the localized region near the maximum electric field , and most of the generated holes are collected by the gate electrode:

$$I_{\text{hole}} = W \times \int \int \alpha_n(E) j_n \, dx \, dy \approx \alpha_n(E_{\text{max}}) \times I_{\text{ds}} \times L_{\text{black}}$$

$$\alpha_n = 5.6 \times 10^6 \exp(-2.4 \times 10^6/E)$$

EEE ELECTRON DEVICE LETTERS, VOL. 20, NO. 12, DECEMBER 1999 p608

→ No clear indication of avalanche Fig. 1. DC characteristics of the AlGaN/GaN HJFET with a gate dimension of $0.9 \times 40 \ \mu m$. (a) Gate current I_g versus drain voltage V_d . (b) Drain current I_d versus drain voltage. Drain currents are measured with (solid lines) and without (dashed lines) a time interval (10 s) between each gate voltage. When the drain currents are measured immediately after gate bias application, the currents are reduced in the low-drain voltage region.

TCAD for lateral GaN: Including Quantum Physics in Semiconductor Equations

$$\begin{split} & -\nabla \cdot \left(\frac{\epsilon_{0}\epsilon_{de}}{q}\nabla V\right) = -n + p + N_{D}(1 - f_{D}) - N_{A}f_{A} + \sum_{j} N_{ij}(\delta_{j} - f_{ij}), \\ & \mathbf{Semiconductor eqn.} \\ \nabla \cdot J_{n} - \sum_{j} R_{n}^{ij} - R_{sp} - R_{st} - R_{ou} + G_{opt}(t) = \frac{\partial p}{\partial t} + N_{D} \frac{\partial f_{D}}{\partial t}, \quad J_{n} = n\mu_{n}\nabla E_{fn} \\ \nabla \cdot J_{p} + \sum_{j} R_{p}^{ij} + R_{sp} + R_{st} + R_{on} - G_{opt}(t) = -\frac{\partial p}{\partial t} + N_{A} \frac{\partial f_{A}}{\partial t}, \quad J_{p} = p\mu_{p}\nabla E_{fp} \end{split}$$

$$\begin{aligned} \mathbf{M}(k) | \psi_{i} \rangle = E_{i}(k) | \psi_{i} \rangle \\ & \mathbf{Quantum} \qquad p = \sum_{i} \rho_{i}^{ob} KTln \left[1 + e^{(E_{i} - E_{ij})/kT} \right] + unconfined holes, \end{aligned}$$

$$\begin{aligned} \mathbf{M}(k) | \psi_{i} \rangle = E_{i}(k) | \psi_{i} \rangle \\ & \mathbf{M}(k) | \psi_{i} \rangle = E_{i}(k) | \psi_{i} \rangle \\ & \mathbf{M}(k) | \psi_{i} \rangle = E_{i}(k) | \psi_{i} \rangle \\ & \mathbf{M}(k) | \psi_{i} \rangle = E_{i}(k) | \psi_{i} \rangle \\ & \mathbf{M}(k) | \psi_{i} \rangle$$

Computing impact ionization rate

$$W_{\rm iir}(n_1, \mathbf{k}_1) = \frac{2\pi}{\hbar} \frac{V^2}{(2\pi)^6} \sum_{n_{1'}, n_2, n_{2'}} \int d^3 \mathbf{k}_{1'} \int d^3 \mathbf{k}_{2'} \times |\mathbf{M}|^2 \,\delta(E_1 + E_2 - E_{1'} - E_{2'})$$

alpha_n=a+exp(-b/E) a=2.31E8 (1/cm) b=3.14E7 (V/cm)

→ Theory looks much like optical transition computation!

FIG. 4. Impact ionization processes for initial electrons located at (a) Γ and (b) M points. Circles correspond to electrons for state 1, squares for state 2, diamonds for state 1', and triangles for state 2'. Arrows indicate direction of transition path.

Fig. 1. Electron ionization coefficient, α (filled black circle) and hole ionization coefficient, β (empty black circle) of GaN from this work are compared with those by Bertazzi et al. [24] along T-M (α : filled green upright triangle, β : empty green upright triangle), Bertazzi et al. along T-A (α : filled blue down-pointing triangle, β : empty blue down-pointing triangle) and Oğuzman et al. [25] (α : filled red square, β : empty red square).

Fig. 2. Electron ionization coefficient, α (filled black circle) and hole ionization coefficient, β (empty black circle) of Al_{0.45}Ga_{0.55}N from this work compared to Tut et al. [11] Al_{0.4}Ga_{0.6}N (α : filled maroon hexagon, β : empty maroon hexagon), Bulutay [12] Al_{0.4}Ga_{0.6}N (α : blue triangle), Bellotti et al. [13] Al_{0.4}Ga_{0.6}N (α : filled red square, β : empty red square) and GaN of our work (α : filled teal diamond, β : empty teal diamond).

For GaN

$$lpha = 7.32 imes 10^7 \exp\left[-\left(rac{7.16 imes 10^8}{E}
ight)^{1.90}
ight] \mathrm{cm}^{-1}$$
 $eta = 3.48 imes 10^7 \exp\left[-\left(rac{6.56 imes 10^8}{E}
ight)^{1.65}
ight] \mathrm{cm}^{-1}$

For AI(0.45)Ga(0.55)N

$$\alpha = 1.66 \times 10^7 \exp\left[-\left(\frac{8.51 \times 10^8}{E}\right)^{1.75}\right] \mathrm{cm}^{-1}$$

$$eta = 8.01 \, imes \, 10^7 \, \mathrm{exp} \left[- \left(rac{1.02 \, imes \, 10^9}{E}
ight)^{1.65}
ight] \mathrm{cm}^{-1}$$

Measurement of avalanche multiplication utilizing Franz-Keldysh effect in GaN p-n junction diodes

FIG. 1. Schematic cross section of a GaN PND with double-side-depleted shallow bevel termination. The sub-bandgap light was irradiated from the surface side.

assume
$$\alpha_n = \alpha_p$$
 for simplicity
 $1 - \frac{1}{M} = \int_{W_p}^{W_n} \alpha(E) dx.$

Appl. Phys. Lett. 115, 142101 (2019); https://doi.org/10.1063/1.5114844

$$\alpha(E,T) = a(T) \cdot \exp\left[-\left(\frac{b(T)}{E}\right)\right]$$

 $a(T) = 1.30 \times 10^{6} \cdot [1 + 1.5 \times 10^{-3} \cdot (T - 298)] \text{ cm}^{-1},$ $b(T) = 1.18 \times 10^{7} \cdot [1 + 6.0 \times 10^{-4} \cdot (T - 298)] \text{ Vcm}^{-1}.$

> Optical method and electrical method (TCAD) have different results

To get BV, refit: B=1.18E7 V/cm → B=0.95E7 V/cm

260

Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates

(A/um**2)

Lina Cao, et.al.

 $\alpha(E) = 4.48 \times 10^8 \exp(-3.39 \times 10^7/E),$ $\beta(E) = 7.13 \times 10^6 \exp(-1.46 \times 10^7/E).$

Refit based on IV: a=3.39E7 revised to a=3.0E7 V/cm

→ Better agreement between optical and electrical extraction.

Experimental determination of impact ionization coefficients of electrons and holes in gallium nitride using homojunction structures

Passivation

Ji, et.al. Appl. Phys. Lett. 115, 073503 (2019); doi: 10.1063/1.509924 Part 1/2

Software Inc.

Experimental determination of impact ionization coefficients of electrons and holes in gallium nitride using homojunction structures

Ji, et.al. Appl. Phys. Lett. 115, 073503 (2019); doi: 10.1063/1.509924 Part 2/2

$$\alpha(E) = 2.11 \times 10^9 \, e^{-3.689 \times 10^{7} \frac{1}{E}} \, \mathrm{cm}^{-1}.$$
$$\beta(E) = 4.39 \times 10^6 \, e^{-1.8 \times 10^{7} \frac{1}{E}} \, \mathrm{cm}^{-1},$$

Use of optical generation to determine impact ionization rate

Alpha=a*exp(-b/E) Coefficient b is refitted to get the correct BV: b=3.689E7→ b=2.8E7 V/cm

The difference persisted in another experimental structure from the same paper. Issues with optical experiment or extraction method?

- Importance of field plates for lateral GaN
- Avalanche effect in GaN

- Avalanche in lateral GaNFET and FP design
- Summary

Recent experimental impact ionization coefficients alpha=a*exp(-b/F)

Ref	Electron (a ,1/cm)	Electron (b,V/cm)	Hole (a,1/cm)	Hole (b,V/cm)
Cao et. Al [1]	4.48E8	3.39E7 (refit 3.0E7)	7.13E6	1.46E7
Maeda et. Al [2]	1.30E6	1.18E7 (refit 0.95E7)	1.30E6	1.18E7 (refit 0.95E7)
Ji et. Al [3]	2.11E9	3.689E7 (refit 2.8E7)	4.39E6	1.8E7

[1] APPLIED PHYSICS LETTERS 112, 262103 (2018)

[2] Appl. Phys. Lett. 115, 142101 (2019); https://doi.org/10.1063/1.5114844

[3] Ji, et.al. Appl. Phys. Lett. 115, 073503 (2019); doi: 10.1063/1.509924

→ Rogorous theory agrees well with one of the experimental works.

GaNFET width=180mm

GaNHEMT width=180mm

Summary

- For commercially available lateral GaNFET at 650V or 1200V, avalanche may play a role.
- More study is needed to explain the large difference in experimental IIR from different labs and from different extraction methods.
- Crosslight-TCAD is a suitable tool for avalanche simulation and GaNPower has a handle on 1200V GaN design.

Thanks for your attention!

