

Project conversion to full vectorial VCSEL model

© Crosslight Software, Inc., Vancouver, BC, Canada, (604)320-1704, www.crosslight.com

Introduction VCSEL TMM model

- The optical wave is decoupled into its lateral and longitudinal components, leading to some approximations.
- The longitudinal wave is determined using a 1D transfer matrix (TMM) model.
- The lateral mode (LP) is based on a fiber-like (Bessel) solution or a 1D effective index method in the radial direction.
- Lasing behavior based on the same round-trip gain equation (RTG) as our edge-emitting laser models (phase matching & unity gain).
- Relatively simple with small mesh size & fast computation time.

Introduction VCSEL microcavity (FDFD) model

- Full solution of vectorial Maxwell equations to provide a single combined mode for the lateral & longitudinal problems.
- TE/TM/HE modes with fully resolved optical standing wave
- Requires more mesh/computation time than older TMM model

Step 00 – Original Results

• Start from the existing project

- Make sure the project can run successfully

Step 00 – Original Results

- Results
 - Band diagram

Step 00 – Original Results

- Results
 - Lasing power

Step 01 – Input file modifications

- Edit .sol file:
 - Remove all optical models specific to the TMM model: vcsel_model, etc...
 - Remove all references to RTG model: begin_zsol/end_zol, solve_rtg=yes, etc...
 - Adjust all scan commands so that it is a purely electrical problem (i.e. a basic diode)

Step 01 – Input file modifications

- Edit .sol file:
 - Remove vcsel parameters from sol file
 - Ensure electrical
 behavior for a basic
 diode is preserved

Step 01 – Input file modifications

- Edit .sol file:
 - Remove vcsel
 parameters from sol file
 - Ensure electrical behavior for a basic diode is preserved

```
26 $stop
27 $
28 newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 &&
29 max iter=50 opt iter=25 stop iter=10
30
31 scan var=voltage 1 value to=-1.3 print step=1.3 &&
32 init step=0.2 min step=1.e-5 max step=0.5
33
34 $ better to start with low RTG and progress slowly
35 $ auto finish=rtgain is mandatory to get RTG ready
36 $
37 scan var=current 1 value to=8.e-3 print step=0.15e-3 &&
38 init step=0.1e-4 min step=1.e-6 max step=0.5e-3 &&
  auto finish=rtgain auto until=0.95 auto condition=above
40
41
42 $ it is wise to start with a small step here.
43
   scan var=current 1 value to=8.e-3 solve rtg=yes &&
45
   init step=0.01e-3 max step=0.1e-3
46
47 $
48 end
```


- Identify DBR stacks in .layer.
- Convert the single-layer effective/average material of DBR stack to actual individual DBR layers:
 - All layers must be explicitly defined
 - It's recommended to make use of loops to simplify the input.
- (Optional) Remove unneeded vcsel_section definitions and vcsel_type tags. These are ignored in FDFD approach.

- Update Layer file
 - Bottom DBR
 - Remove vcsel section

12 13 vcsel_section vcsel_type=n-dbr && 14 dbr_period_from_macro=yes && 15 active=no mesh points=10 16 17 \$ this is the effective medium 18 layer_mater mater_lib=AlGaAs var1=0.625 column_num=1 var_symbol1=x 19 20 \$ let's define a DBR period using macro like this (use column 1 only) 21 \$ (also possible to define grading within a DBR period) 22 vertical dbr laver mater mater lib=AlGaAs var symbol1=x var1=0.25 && 23 thick=0.0595 24 vertical dbr layer mater mater lib=AlGaAs var symbol1=x var1=1. && 25 thick=0.0706 26 27 \$ thickness here is actually determined by DBR periods above 28 layer d=1. n=15 r=0.9 && 29 n_doping1=2.e24 vcsel_type=n-dbr use_dbr_period=29

- Update Layer file
 - Bottom DBR
 - Remove vcsel section
 - Add full DBR definition

5
7 start_loop symbol=%k value_from=1 value_to=29
8 \$vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=0.25 &&
9 \$ thick=0.0595
10 layer_mater mater_lib=AlGaAs var1=0.25 column_num=1 var_symbol1=x &&
11 n_doping=2.e24
12 layer d=0.0595 n=5 r=1.
13 \$vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=1. &&
14 \$ thick=0.0706
15 layer_mater_mater_lib=AlGaAs var1=1. column_num=1 var_symbol1=x &&
16 n_doping=2.e24
17 layer d=0.0706 n=6 r=1.
18 end_loop

- Update Layer file
 - Bottom DBR
 - Top DBR
 - Remove vcsel section

1 vcsel_section vcsel_type=p-dbr &&
2 dbr_period_from_macro=yes &&
3 active=no mesh_points=10
4
5 \$ effective medium layer
5 layer_mater mater_lib=AlGaAs var1=0.625 column_num=1 var_symbol1=x
7
8 \$ let's define a DBR period using macro like this (use column 1 only)
9 \$ (also possible to define grading within a DBR period)
9 vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=1. &&
1 thick=0.0706
2 vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=0.25 &&
5 thick=0.0595
5

5 \$ thickness here is actually determined by DBR periods above 6 layer d=1. n=12 r=1.1 && 7 p_doping1=3.e24 vcsel_type=p-dbr use_dbr_period=20 e <</pre>

- Update Layer file
 - Bottom DBR
 - Top DBR
 - Remove vcsel section
 - Add full DBR definition

49 start_loop symbol=%k value_from=1 value_to=19
50 \$vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=1. &&
51 \$ thick=0.0706
52 layer_mater mater_lib=AlGaAs var1=1. column_num=1 var_symbol1=x &&
53 p_doping=3.e24
54 layer d=0.0706 n=6 r=1.
55 \$vertical_dbr_layer_mater mater_lib=AlGaAs var_symbol1=x var1=0.25 &&
54 thick=0.0595
57 layer_mater mater_lib=AlGaAs var1=0.25 column_num=1 var_symbol1=x &&
58 p_doping=3.e24
59 layer_mater mater_lib=AlGaAs var1=0.25 column_num=1 var_symbol1=x &&
58 p_doping=3.e24
59 layer_d=0.0595 n=5 r=1.
60 end_loop

- Results
 - Band diagram

- Add effective_medium to the sol file to prevent anomalous voltage drops over the highly-doped DBR layers.
- Include the microcavity model in the sol file

- Sol File Update
 - Microcavity parameters
 - Init_wave
 - init_wavel
 - Define the minimum wavelength for the optical mode solver
 - This is a critical parameters it should be selected close to the design value, then tweak it slowly to obtain the required modes

```
cylindrical axis=y
l3 init_wave backg_loss=500. init_wavel=0.835 &&
l4 boundary_type=(2 1 5 5) wavel_range=(0.75, 0.90)
l5 multimode mode_num=10 boundary_type1=(2 1 5 5) &&
l6 boundary_type2=(1 1 5 5)
l7 pml permittivity_real=1.0 permittivity_imag=0. pml_mesh=5 &&
l8 pml_length=0.5 pure_index_loss=no
l9 sparse_eigen_solver
20 direct_eigen
21 microcavity_model set_wavelength=0.830 fdfd_vectorial=yes
22 microcavity_exit above_y=1. power_refl=0.0
l3 $
l4 effective_medium mater1=1 mater2=2
l5 d
```


- Sol File Update
 - Microcavity parameters
 - Init_wave
 - wavel_range
 - Define the wavelength range to solve in
 - boundary_type
 - Define the termination of the problem

```
cylindrical axis=y
cylindrical axis=y
init_wave backg_loss=500. init_wavel=0.835 &&
boundary_type=(2 1 5 5) wavel_range=(0.75, 0.90)
multimode mode_num=10 boundary_type1=(2 1 5 5) &&
boundary_type2=(1 1 5 5)
pml permittivity_real=1.0 permittivity_imag=0. pml_mesh=5 &&
pml_length=0.5 pure_index_loss=no
sparse_eigen_solver
direct_eigen
microcavity_model set_wavelength=0.830 fdfd_vectorial=yes
microcavity_exit above_y=1. power_refl=0.0
$
current cu
```


- Sol File Update
 - Microcavity parameters
 - multimode
 - Mode_num
 - Define the number of modes to solve for
 - pml
 - Define the Perfectly matched layer boundaries
 - This is the state of art of the absorbing boundary conditions. It is used to truncate the

computational window.

```
12 cylindrical axis=y
13 init_wave backg_loss=500. init_wavel=0.835 &&
14 boundary_type=(2 1 5 5) wavel_range=(0.75, 0.90)
15 multimode mode_num=10 boundary_type1=(2 1 5 5) &&
16 boundary_type2=(1 1 5 5)
17 pml permittivity_real=1.0 permittivity_imag=0. pml_mesh=5 &&
18 pml_length=0.5 pure_index_loss=no
19 sparse_eigen_solver
20 direct_eigen
21 microcavity_model set_wavelength=0.830 fdfd_vectorial=yes
22 microcavity_exit above_y=1. power_refl=0.0
23 $
24 effective_medium mater1=1 mater2=2
25 $
```

CROILIGHT Software Inc.

- Results
 - Band diagram

- Results
 - Band diagram
 - Optical modes
 - Refractive Index pattern

- Results
 - Band diagram
 - Optical modes
 - Mode 01
 - λ=0.838542

- Results
 - Band diagram
 - Optical modes
 - Mode 01
 - λ=0.838542

- Results
 - Band diagram
 - Optical modes
 - Mode 02
 - λ=0.838442

- Results
 - Band diagram
 - Optical modes
 - Mode 02
 - λ=0.838442

- Results
 - Band diagram
 - Optical modes
 - Mode 03
 - λ=0.838434

- Results
 - Band diagram
 - Optical modes
 - Mode 03
 - λ=0.838434

- Results
 - Band diagram
 - Optical modes
 - Mode 04
 - λ=0.838426

- Results
 - Band diagram
 - Optical modes
 - Mode 04
 - λ=0.838426

- Results
 - Band diagram
 - Optical modes
 - Mode 05
 - λ=0.838297

- Results
 - Band diagram
 - Optical modes
 - Mode 05
 - λ=0.838297

- Results
 - Band diagram
 - Optical modes
 - Mode 06
 - λ=0.838292

- Results
 - Band diagram
 - Optical modes
 - Mode 06
 - λ=0.838292

- Results
 - Band diagram
 - Optical modes
 - Mode 07
 - λ=0.838239

- Results
 - Band diagram
 - Optical modes
 - Mode 07
 - λ=0.838239

- Results
 - Band diagram
 - Optical modes
 - Mode 08
 - λ=0.838124

- Results
 - Band diagram
 - Optical modes
 - Mode 08
 - λ=0.838124

- Results
 - Band diagram
 - Optical modes
 - Mode 09
 - λ=0.838117

- Results
 - Band diagram
 - Optical modes
 - Mode 09
 - λ=0.838117

- Results
 - Band diagram
 - Optical modes
 - Mode 10
 - λ=0.838046

- Results
 - Band diagram
 - Optical modes
 - Mode 10
 - λ=0.838046

- Results
 - Band diagram
 - Optical modes
 - Lasing power

