TCAD Simulation of AMOLED/TFT Crosstalk & Interference Effects

www.crosslight.com

- Intra-pixel electrical interference in TFT
- Inter-pixel optical interference in AMOLED
- Summary

TCAD tool requirement needs to handle large area device with hundreds or thousands of um in lateral sizes while vertical features are of nm sizes.

Ref: Yang et. al, APL 87, 143507 (2005)

Reference TFT driver circuit for a AMOLED pixel

SCIENTIFIC **REPORTS** | 5:11755 | DOI: 10.1038/srep11755

lay1=S/D channel-lay2 lay3=G lay4=via between SD/ G (S/D also power line and data line, G also scan line) lay5 OLED(ITO/OL) lay6 Via between **OLED and S/D** lay11/12/13 ares Software Inc. contacts

CROSLIGHT Software Inc. Transient simulation Powerline=10V within 0.1ms, Scanline&Dataline impulse. Contact4=ground Contact1=Powerline Contact2=Dataline Contact3=Scanline

CROSLIGHT Software Inc.

Comment: potential distribution clearly spread across different TFT due to capacitance effects.

- Intra-pixel electrical interference in TFT
- Inter-pixel optical interference in AMOLED
 - Summary

TCAD project 1: Bias the blue to 5V and ground all others.

Use of singlet diffusion to study how emitting exciton singlets diffuse to neighboring cells and cause undesired emission or interference.

Formation of singlet and triplet excitons

✓ Singlets may recombine to emit light

 Triplets are normally wasted unless harvested by phosphorescent dopants

<u>Our model</u>

Basic exciton diffusion equations for both singlet and triplets [1]:

$$\begin{split} \frac{\partial S(x)}{\partial t} &= \gamma \cdot r(x) \cdot n(x) \cdot p(x) + D_S \cdot \frac{\partial^2 S(x)}{\partial x^2} - \frac{S(x)}{\tau} \\ &- \text{quenching_terms} \end{split}$$

Exciton quenching may include bulk/interface quenching and triplettriplet biexciton quenching [2]

[1]B. Ruhstaller, et.al., "Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices," IEEE J. SEL. TOPICS IN QUANTUM ELECTRONICS, VOL. 9,2003, p. 723.

[2] M. A. BALDO, et.al., "Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation,"p. 10 967 PRB vol. 62, 2000

Singlet exciton lateral diffusion profiles

<u>CROSLIGHT</u> Software Inc.

Current crosstalk between pixels

Exciton emission interference between pixels due to lateral diffusion effects

- Crosslight Software offers accurate simulation solution based on quantum physics
- Robust convergence and numerical efficiency make Crosslight tools choice for R & D

