

A Full 3D Vectorial FDFD Optical Solver: CrosslightFDFD

3D Optical solution

3D Modal solver

- For a given structure, it is required to define the possible modes.
- Then, for each mode, it is required to calculate:
 - Modal Wavelength or propagation constant
 - Electromagnetic field
- Available solvers
 - Cavity solver (Resonance analysis)
 - Waveguide solver

3D Propagation simulation

- Our main object is modelling the wave as it propagates through the structure.
 - Calculate the Scattering parameters

www.crosslight.com

3D Optical solution

In Crosslight, the Finite Difference Frequency Domain (FDFD) method was selected to implement the optical solver

Advantages of the FDFD method

- I. Compared to the FDTD, FDFD is faster
 - A typical FDFD run takes minutes while an FDTD simulation runs up to several hours for a comparable system and hardware
- 2. Compared to the FDTD, FDFD is accurate specially for the highly resonant structure [1]
- 3. The FDFD method in not dependent on the mesh generation (compared to the Finite element method[2])

www.crosslight.com

3D Modal solver

3D Modal solver

Used to analyze the device and calculate the possible modes (resonance / guiding)

www.crosslight.com

- For each mode
 - Mode wavelength / propagation constant
 - Mode electromagnetic fields
 - Mode wave intensity

- 1- Rectangular VCSEL cavity
 - VCSEL structure
 - Rectangular cross section
 - 10×70 μm
 - Bottom DBR
 - 29 layer
 - Top DBR
 - 19 layer

1- Rectangular VCSEL cavity

- Cavity structure
 - Cross-sectional material
 - Center of the cavity

1- Rectangular VCSEL cavity

- Cavity structure
 - Cross-sectional material
 - Center of the structure

- 1- Rectangular VCSEL cavity
 - Results
 - Mode o1
 - $\lambda = 837.24 \text{ nm}$
 - Cross-sectional wave intensity
 - Center of the Cavity

10 20 30 40 50 60 70 80 90

X-axis (um)

- 1- Rectangular VCSEL cavity
 - Results
 - Mode o1
 - $\lambda = 837.24 \text{ nm}$
 - Cross-sectional intensity

10 20 30 40 50 60 70 80 90 Y-axis (um)

- 2- Circular crosssectional VCSEL cavity
 - VCSEL structure
 - Circular cross section
 - Radius = 3.75 µm
 - Bottom DBR
 - 25 layer
 - Top DBR
 - 20 layer

- 2- Circular crosssectional VCSEL cavity
 - VCSEL structure
 - Circular cross section
 - Radius = 3.75 µm
 - Bottom DBR
 - 25 layer
 - Top DBR
 - 20 layer

- 2- Circular crosssectional VCSEL cavity
 - Results
 - Mode o1
 - Operating wavelength
 λ = 984.397 nm
 - Cross-sectional fields
 - Center of the cavity

Y-axis (um)

0 1 2 3 4 5 6 7 8 9

X-axis (um)

- 2- Circular crosssectional VCSEL cavity
 - Mode 01
 - Operating wavelength
 - $\lambda = 984.397 \text{ nm}$
 - Cross-sectional fields
 - Center of the cavity
 - Center of the structure

- 2- Circular crosssectional VCSEL cavity
 - Mode 02
 - Operating wavelength
 - $\lambda = 983.041 \text{ nm}$
 - Cross-sectional fields
 - Center of the cavity

2- Circular crosssectional VCSEL cavity

- Mode 02
 - Operating wavelength
 - $\lambda = 983.041 \text{ nm}$
 - Cross-sectional fields
 - Center of the cavity
 - Center of the structure

3D Propagation Simulation

3D Propagation simulation

- Used to simulate the electromagnetic fields as it propagates through the device.
- The analysis is carried in two steps
 - 1. Define the input/output position (Port-position)
 - 2. Calculate the propagating fields inside the device

 \hfill{a} A 180 μm directional coupler is be analyzed .

- Step 01
 - Define the input port
 - User select the input port position.

- Step 01
 - Define the input port
 - For the input port, define the port modal fields
 - TE mode

- Step 02
 - Apply 3D FDFD analysis with the source

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x
 - E_z

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x
 - E_z
 - H_y

- The structure consists of an array of nanocolumn
 - It is required to analyze the propagating fields along the 3D structure

- Step 01
 - Define the input port
 - User select the input port position.

- Step 01
 - Define the input port
 - For the input port, define the port modal fields
 - TE mode

TE mode

- Step 02
 - Apply 3D FDFD analysis with the source

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x
 - E_z

- Step 02
 - Apply 3D FDFD analysis with the source
 - Field results
 - E_x
 - E_z
 - H_y

Thank you !